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PROJECTIVE SUBMODEL OF THE OVSYANNIKOV VORTEX

UDC 533; 517.958A. S. Pavlenko

A submodel of the Ovsyannikov vortex with projective symmetry is studied. Integration of the factor
system of the submodel reduces to solving a first-order differential equation which is not solved with
respect to the derivative. The properties of the solutions of this equation are studied. It is shown that
the submodel describes gas flow with a nonstationary source and a nonstationary sink. The problem
of the motion of a gas volume between pistons of cylindrical shapes is studied, and its solution with
an invariant shock wave is obtained.

Key words: Ovsyannikov vortex, partially invariant solutions of the equations of gas dynamics,
shock waves.

Introduction. The term singular vortex refers to the partially invariant solutions of the equations of gas
dynamics (EGD) of rank two and defect one constructed on the basis of the rotation group SO(3), which is admitted
by the EGD [1]. This class of solutions generalizes the spherically symmetric solutions in the sense that the tangent
to the spheres of the velocity component is different from zero. Pokhozhaev suggested that this class of solutions
be called the Ovsyannikov vortex. The system of equations of the Ovsyannikov vortex is split into an invariant
subsystem that describes the radial motion of gas and equations for a noninvariant function that describes the
spherical component of the motion. The latter subsystem is integrated in implicit form over the solutions of the
invariant subsystem.

For a complete description of gas flow, it is necessary to find the solutions of the radial subsystem. Using the
symmetries admitted by the radial subsystem, it is possible to find its invariant solutions. Chupakhin [2] studied
the submodel of gas dynamics generated by the subalgebra {so(3), ∂t}, which was called the stationary Ovsyannikov
vortex. The homogeneous Ovsyannikov vortex (the submodel generated by the subalgebra {so(3),K}, where K is
a dilatation operator) was investigated in [2, 3]. In these submodels, the invariant functions are expressed in terms
of an auxiliary function of one variable and its derivatives. In the case of the stationary Ovsyannikov vortex, this
function is a solution of an ordinary differential equation (ODE) of the first order that is not solved with respect
to the derivative. For the homogeneous Ovsyannikov vortex, the auxiliary function is a solution of the Schwarz
inhomogeneous equation.

In the present paper, we study the projective submodel of the Ovsyannikov vortex. In this submodel, the
required functions are also written in terms of an auxiliary function that is a solution of a first-order ODE that is
not solved with respect to the derivative. Four integral curves pass through each point of the range of solutions of
this equation, which allows one to construct a solution that corresponds to gas flow with a shock wave [4].

1. Ovsyannikov Vortex. Let r, θ, and ϕ be spherical coordinates, where 0 ≤ θ ≤ π, and let Ū , V , and
W be the radial, latitudinal (in θ), and longitudinal (in ϕ) velocity components. We introduce the modulus H̄ of
the tangential velocity component (V,W ) and the angle ω of its deviation from the meridian: V = H̄ cosω and
W = H̄ sinω.

The representation of the examined partially invariant solution of rank two and defect one with the nonin-
variant function ω is written as

Ū = Ū(t, r), H̄ = H̄(t, r), ρ = ρ(t, r), S = S(t, r), ω = ω(t, r, θ, ϕ). (1.1)
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The equations of the Ovsyannikov vortex are split into the invariant subsystem describing radial gas motion

D0Ū + ρ−1pr = r−1H̄2, D0(rH̄) = 0, D0S = 0, p = f(ρ, S); (1.2)

kD0h = h2 + 1, k = r/H̄, h = k(ρ−1D0ρ+ r−2(r2Ū)r), (1.3)

and an overdetermined system for the noninvariant function ω, which after the replacement h = tan τ is written as

ωτ + cosωωθ + (sinω/ sin θ)ωϕ = − cot θ sinω,

sin θ sinωωθ − cosωωϕ = cos θ cosω + tan τ sin θ,
(1.4)

and is then integrated in implicit form [1]. In (1.2)–(1.4), D0 = ∂t + Ū∂r is operator, k and h are auxiliary functions
of the variables t and r, and τ = τ(t, r) is modified time.

At the initial time τ = 0, if the particle projection onto the unit sphere S1 is specified by the coordinates x0,
y0, and z0 (which correspond to the spherical coordinates r0 = 1, θ0, ϕ0), the spherical trajectory of the particle
(the projection of the trajectory onto the sphere S1) is described by the vector function

x(τ) = (l(τ)x0 + m sin τ)/ sin θ0, (1.5)

where l(τ) = cos τ sin θ0 + sin τ cos θ0 cosω0 and m = (−y0 sinω0, x0 sinω0,− cosω0). The initial distribution
ω0(θ0, ϕ0) = ω(0, θ0, ϕ0) of the function ω should have a special form [1]. The choice ω0(θ0, ϕ0) = π/2 ensures
the completeness property of the function ω0(θ0, ϕ0): it is defined and continuous on the sphere without poles
0 < θ0 < π, 0 ≤ ϕ0 < 2π. In this case, formula (1.5) for the spherical particle trajectories is simplified:

x(τ) = x0 cos τ + m sin τ/ sin θ0, m = (−y0, x0, 0). (1.6)

This motion is rotationally symmetric (i.e., invariant under rotations around the z axis). The particle trajectories
are plane curves. At the initial time τ = 0, the particles are on the sphere without poles, and at the time τ , they
occupy the spherical zone τ < θ < π − τ . For the final description of the gas flow, it is necessary to integrate the
invariant subsystem (1.2), (1.3).

2. Projective Submodel. For the case of a polytropic gas with the equation of state

p = Sρ5/3, (2.1)

the equations of gas dynamics admit the 14-dimensional Lie algebra L14. A characteristic of L14 is the projective
operator

P = t(t∂t + x ∂x + y ∂y + z ∂z − u ∂u − v ∂v − w ∂w − 3ρ ∂ρ − 5p ∂p) + x ∂u + y ∂v + z ∂w,

which is not admitted by the equations of a polytropic gas if the adiabatic exponent γ is different from 5/3.
The partially invariant solution of the EGD of rank one and defect one constructed on the basis of the

symmetry algebra L = {so(3), ∂t + P} from the optimal system of subalgebras [5], where so(3) is the three-
dimensional Lie algebra of the rotation group SO(3), will be called the projective submodel of the Ovsyannikov
vortex (the projective Ovsyannikov vortex ). In the coordinates r, θ, ϕ, Ū , and H̄, ω, the algebra L has the set of
invariants

r√
t2 + 1

, Ū
√
t2 + 1− rt√

t2 + 1
, H̄

√
t2 + 1, ρ(t2 + 1)3/2, p(t2 + 1)5/2.

The representation of the solution of the submodel has the form

Ū =
U(λ) + λt√

t2 + 1
, H̄ =

H(λ)√
t2 + 1

, ρ =
R(λ)

(t2 + 1)3/2
, p =

P (λ)
(t2 + 1)5/2

,

c2 =
C2(λ)
t2 + 1

, C2(λ) =
5
3
SR2/3, S = S(λ), ω = ω(t, r, θ, ϕ), λ =

r√
t2 + 1

.

(2.2)

Here, the sound velocity c2 = ∂p/∂ρ = 5p/(3ρ) and the entropy S are defined by the equation of state (2.1).
The equations of the submodel in question can be obtained from the equations of the Ovsyannikov vortex.

Indeed, since the quantities Ū , H̄, S, ρ, and ω from (2.2) are a particular case of (1.1), they satisfy the invariant
subsystem (1.2), (1.3) and the auxiliary subsystem (1.4). Since the quantities Ū , H̄, S, and ρ from (2.2) are not
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contained in Eqs. (1.4), the form of the representation of solution (2.2) does not influence the integration of the
auxiliary subsystem. The invariant subsystem of the projective Ovsyannikov vortex is obtained by substitution
of (2.2) into Eqs. (1.2) and (1.3):

1
2

(U2)′ +
P ′

R
=
H2

λ
− λ, (λH)′ = 0, S′ = 0; (2.3)

λ

H
Uh′ = h2 + 1, h =

λ

H

(
U(lnR)′ +

1
λ2

(λ2U)′
)
. (2.4)

From (2.3) it follows that H = a0/λ and that the gas flow is isentropic S = S0 = const. Because spherically
symmetric solutions are not considered here, the inequality H̄ = a0λ

−1(t2 + 1)−1 > 0 (a0 > 0) holds. Expressing
the function U(λ) from the first equation of (2.4), substituting it into the second equation of (2.4), and integrating,
we obtain R(λ) = R0|h′|/

√
h2 + 1. Thus, all invariant functions are expressed in terms of λ, h, and h′:

U = a0
h2 + 1
λ2h′

, H =
a0

λ
, R = R0

|h′|√
h2 + 1

, S = S0, C2 = C0
h′2/3

(h2 + 1)1/3
, (2.5)

where C0 = (5/3)S0R
2/3
0 .

Using the equation of state (2.1), which is written in terms of the invariants as P = S0R
5/3, we calculate

the integral ∫
P ′

R
dλ =

5
2
S0R

2/3 + const =
3
2
C2(λ) + const, (2.6)

where the last equality is valid by virtue of (2.2). Then, in view of (2.5) and (2.6), the first equation in (2.3) gives
the invariant Bernoulli integral

U2 + 3C2 = −B(λ), B(λ) = (λ4 − 2b0λ2 + a2
0)/λ

2. (2.7)

The constraint on the constant b0 will be determined below. Substituting the expressions of U(λ) and C2(λ)
from (2.5) into (2.7), we obtain the key equation for the function h(λ)

F (h′, h, λ) ≡ 3C0h
′8/3 +B(λ)h′2(h2 + 1)1/3 + (h2 + 1)7/3a2

0/λ
4 = 0. (2.8)

This is a first-order ordinary differential equation which is not solved with respect to the derivative.
3. Properties of the Solutions of the Key Equation. The main notions of the theory of implicit

differential equations are given below [6].
The criminant of the equation F (h′, h, λ) = 0 is the set of singular points of this equation, i.e., the points of

the surface F = 0 at which ∂F/∂h′ = 0. The discriminant curve of the equation F (h′, h, λ) = 0 is the projection
of the criminant onto the plane (h, λ) that is parallel to the h′ axis and is obtained by elimination of h′ from the
relations

F = 0,
∂F

∂h′
= 0.

A point of the criminant is called an irregular singular point if the tangent to the surface F = 0 at this point
coincides with the contact plane dh = p dλ, where p is the value of the derivative dh/dλ at the point considered.
The set of irregular singular points of the equation F (h′, h, λ) = 0 satisfies the system

F = 0,
∂F

∂h′
= 0, Fλ + h′

∂F

∂h
= 0. (3.1)

The remaining points of the discriminant curve are called regular singular points. The irregular singular points can
be of the following types: a folded saddle, a focus, or a node. They are obtained from an ordinary saddle, a focus,
or a node by the folding operation [6].

Property 1. The key equation (2.8) implies that B(λ) < 0. Then from (2.7), we obtain the following
constraints on the variable λ and the parameters a0 and b0:

0 < λ̃1 < λ < λ̃2

(
λ̃1,2 =

√
b0 ∓

√
b20 − a2

0

)
, 0 < a0 < b0. (3.2)

We note that the requirement B(λ) < 0 is not sufficient for the existence of solutions of (2.8).
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Properties 2. 1. The discriminant curve ∂Ω of key equation (2.8) is given by the equation

h2 = (λB(λ)/æ)4 − 1 [æ = 4(C3
0a

2
0)

1/4 > 0]. (3.3)

It is defined for λ ∈ [δ1, δ2] [δ1 and δ2 are roots of the polynomial λ2B(λ) + æλ], is continuous, and bounded.
2. The upper part

d+(λ) = ((λB(λ)/æ)4 − 1)1/2 > 0 (3.4)

of the discriminant curve (3.3) has a unique extremum (maximum) at the point

δ0 =
(
(b0 +

√
b20 + 3a2

0 )/3
)1/2

, (3.5)

and d+(λ) increases monotonically on the segment (δ1, δ0) and decreases monotonically on (δ0, δ2). The lower part
d−(λ) = −((λ)B(λ)/(æ)4 − 1)1/2 of discriminant curve (3.3) is symmetric to d+(λ) about the λ axis.

Proof. 1. Differentiation of (2.8) with respect to h′ yields

Fh′ ≡ 2h′(4C0h
′2/3 +B(λ)(h2 + 1)1/3) = 0.

If h′ = 0, relation (2.8) implies that a0 = 0, which is in contradiction with a0 > 0. Substitution of the solution

h′2 = −B3(λ)(h2 + 1)/(43C3
0 )

into (2.8) leads to Eq. (3.3).
Relation (3.3) implies the inequality

(λB(λ)/æ)4 − 1 = æ−4(λ2B2(λ) + æ2)(λB(λ)− æ)(λB(λ) + æ) ≥ 0. (3.6)

Since æ > 0, λ > 0, and B(λ) < 0, inequality (3.6) is equivalent to the inequality

λB(λ) + æ = (λ4 − 2b0λ2 + æλ+ a2
0)/λ 6 0. (3.7)

Because b0 > 0 and æ > 0 by virtue of (3.2) and (3.3), there are only two changes of sign in the series of coefficients
of the fourth-order polynomial. By the Descartes theorem [7], these polynomial has no the roots or has two positive
roots δ1 and δ2. The set of positive solutions λ > 0 of Eqs. (3.7) form the segment [δ1, δ2]. Because discriminant
curve (3.3) is continuous for λ > 0, it is bounded on [δ1, δ2]. We note that d+(λ) > 0 for λ ∈ (δ1, δ2).

2. Differentiating (3.4), we obtain

d′+(λ) =
1

2d+(λ)
4λB3(λ)(3λ4 − 2b0λ2 − a2

0)
æ4

.

The polynomial 3λ4 − 2b0λ2 − a2
0 has exactly one positive root δ0 (3.5), and the polynomial values are negative on

the left of δ0 and positive on the right of it. Because B(λ) < 0 and d+(λ) > 0 on (δ1, δ2), it follows that δ0 is a
unique extremum (maximum) of the function d+(λ). Thus, Property 2 is proved.

We note that the following inequalities hold:

0 < λ̃1 < δ1 < δ2 < λ̃2. (3.8)

Here λ̃1 and λ̃2 are solutions of the equation B(λ) = 0 and δ1 and δ2 are solutions of the equation λB(λ) + æ = 0.
Inequalities (3.8) are valid because the curve h = λB(λ) + æ is located above the curve h = B(λ).

Property 3. Solutions of the key equation (2.8) exist only in the region Ω = {(h, λ): h2 ≤ (λB(λ)/æ)4−1},
which is bounded by the discriminant curve (3.3). Four integral curves pass through each point (h0, λ0) ∈ Ω; two of
them describe monotonically increasing solutions and the other two monotonically decreasing solutions. For none
of the integral curves do vertical (parallel to the h) asymptotes exist.

Proof. Let us find the number of real solutions of Eqs. (2.8). After the replacement q = h′2/3, Eq. (2.8) is
written using the polynomial F̄ (q, h, λ) of the fourth order in the variable q:

F̄ (q, h, λ) ≡ 3C0q
4 +B(λ)(h2 + 1)1/3q3 + (h2 + 1)7/3a2

0/λ
4 = 0. (3.9)

The unique extremum of the polynomial F̄ is the minimum point qmin = −B(λ)(h2 + 1)1/3/(4C0). Because in the
series of coefficients of the polynomial F̄ there are only two changes of sign, it follows from the Descartes theorem [7]
that it does not have real roots or has two positive real roots. Since for large λ, polynomial (3.9) takes positive
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values, it has two real positive roots q1(h, λ) and q2(h, λ) if and only if the inequality F̄ (qmin, h, λ) 6 0 is satisfied
at the minimum point qmin, i.e.,

F̄ (qmin, h, λ) ≡ (h2 + 1)4/3
(a2

0

λ4
(h2 + 1)− B4(λ)

44C3
0

)
6 0,

which is equivalent to the condition (h, λ) ∈ Ω. The equality q1(h, λ) = q2(h, λ) is equivalent to the condition
(h, λ) ∈ ∂Ω.

Equation (2.8), which is solved with respect to the derivative, is split into four equations:

h′1(λ) = q
3/2
1 (h1(λ), λ), h′2(λ) = q

3/2
2 (h2(λ), λ); (3.10)

h′3(λ) = −q3/2
1 (h3(λ), λ), h′4(λ) = −q3/2

2 (h4(λ), λ). (3.11)

Since q1(h, λ) and q2(h, λ) are finite for (h, λ) ∈ Ω and roots of the polynomial, they are continuous in h and
λ. Solving Eqs. (3.10) and (3.11) subject to the initial conditions hi(λ0) = h0, we obtain two monotonically
increasing h = h1(λ) and h = h2(λ) and two monotonically decreasing h = h3(λ) and h = h4(λ) solutions of the key
equation (2.8). Since q1(h, λ) and q2(h, λ) do not become infinite in the examined region, the integral curves hi(λ)
do not have vertical asymptotes. Thus, Property 3 is proved.

Because q1(h, λ) and q2(h, λ) are continuous in Ω and q1(h, λ) = q2(h, λ) only for (h, λ) ∈ Ω, it follows
that in the space R3(h′, h, λ) the first and second equations in (3.10) form the lower (Σ+

1 ) and upper (Σ+
2 ) parts,

respectively, of the surface Σ+, which is located in the upper half-space h′ > 0. Similarly, Eqs. (3.11) form the
surface Σ−, which is symmetric to Σ+ about the plane h = 0. Figure 1 shows the surfaces Σ+ and Σ− in the space
R3(h′, h, λ) and some integral curves of Eq. (2.8) with parameters a0 = 1 and b0 = 2 on these surfaces.

Each integral curve h = hi(λ) from Ω corresponds to an integral curve h = hi(λ), h′ = h′i(λ) on the surface
Σ+ or Σ−. The key equation (2.8) admits the reflection h→ −h, h′ → −h′, and, hence, each integral curve of the
surface Σ− can be obtained from an integral curve of the surface Σ+ by reflection about the λ axis. Therefore, it
suffices to study the properties of the integral curves only on one surface, for example, Σ+.

Subsequently, the notation {h = h(λ)} ⊂ Σ+
i (i = 1, 2) implies that the integral curve {h = h(λ)} ⊂ Ω is a

solution of the ith Eq. (3.10); in this case, the curve h′ = h′(λ), h = h(λ) lies on the surface Σ+
i .

Properties 4. 1. For the functions q1(h, λ) and q2(h, λ), the equality q2(h, λ) = q1(h, λ) for (h, λ) ∈ ∂Ω is
satisfied and the inequality q2(h, λ) > q1(h, λ) for (h, λ) ∈ Ω \ ∂Ω is valid.

2. Each regular singular point of the discriminant curve ∂Ω is a branching point (a stagnation point): two
integral curves — {h = h1(λ)} ⊂ Σ+

1 and {h = h2(λ)} ⊂ Σ+
2 of the key equation (2.8) — leave or enter this point.

At these points the integral curves h = h1(λ) and h = h2(λ) have a common tangent.
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3. At the regular singular points of the discriminant curve ∂Ω, the second derivative h′′(λ) of the solution
of the key equation (2.8) becomes infinite.

Proof. Properties 4.1 and 4.2 directly follow from the properties of the integral curves h = hi(λ) and the
functions qi(h, λ) (see Property 3). Property 4.2 can also be obtained as a consequence of the Cibrario theorem [6]
on the normal form of an equation that is not solved with respect to the derivative in the neighborhood of a regular
singular point.

To prove Property 4.3, we differentiate the equations F (h′(λ), h(λ), λ) = 0 with respect to the variable λ
and obtain h′′ = −(h′Fh + Fλ)/Fh′ . The statement follows from the definition of a regular singular point: Fh′ = 0
and h′Fh + Fλ 6= 0.

Properties 5. 1. On the surface Σ+ exactly two irregular singular points exist.
2. The integral curves wrap around the surface Σ+ in the direction from one irregular singular point to

another — unwinding around one point and then winding around the other. The irregular singular points are folded
focuses (see Figs. 1 and 2).

Proof. 1. Expressions of the functions h2 and h′ in terms of λ are found from the first two equations
in (3.1): h2 = (λB(λ)/æ)4 − 1 and h′ = (−4a2

0B
7(λ)/æ8)1/2. Substitution of them into the third equation of (3.1)

yields

−4a2
0λ

7/3B25/3

k28/3

[
sign(h)

(
(λB(λ)/æ)4 − 1

)1/2

a0λ(−B)1/2 + (3λ4 − 2b0λ2 − a2
0)

]
= 0. (3.12)

The factor in front of the square brackets in (3.12) does not vanish. Therefore, the number of solutions (3.12) that
lie on the segment [δ1, δ2] is equal to the number of points of intersection of the discriminant curve (3.3) and the
curve

h = χ(λ) ≡ −3λ4 − 2b0λ2 − a2
0

a0λ
√
−B(λ)

.

The function χ(λ) vanishes only at the point δ0 (3.5), at which both parts d+(λ) and d−(λ) of the discriminant
curve reach the extremum. Therefore, if one proves that the function χ(λ) decreases monotonically on [δ1, δ2],
the Properties 2.2 imply that the discriminant curve (3.3) and the function h = χ(λ) have exactly two point of
intersection.

By virtue of inequalities (3.8), it suffices to prove that h = χ(λ) is monotonic on the interval (λ̃1, λ̃2), i.e.,
χ′(λ)

∣∣∣
(λ̃1,λ̃2)

< 0. The equality

χ′(λ) = 2ψ(λ)/(a0λ
2(−B(λ))3/2),

where ψ(λ) = 3λ6− 9b0λ4 +7a2
0λ

2 +2b20λ
2− 3a2

0b0, is valid. The equation ψ′(λ) ≡ 2λ(9λ4− 18b0λ2 +7a2
0 +2b20) = 0

has only two positive roots: µ1,2 = (b0 ±
√

7(b20 − a2
0)/3)1/2 (µ1 is the maximum point and µ2 is the minimum

point; the inequalities λ̃1 < µ1 < µ2 < λ̃2 are satisfied). Constraints (3.2) on the constants a0 and b0 imply the
inequalities

ψ(λ̃1) = −4(b20 − a2
0)(b0 −

√
b20 − a2

0 ) < 0, ψ(λ̃2) = −4(b20 − a2
0)(b0 +

√
b20 − a2

0 ) < 0.

Therefore, ψ(λ) < 0 and χ′(λ) < 0 for λ ∈ (λ̃1, λ̃2).
2. Let the branching points αk ∈ ∂Ω and the stagnation point βk ∈ ∂Ω (k = 1, 2, . . . ) be chosen in such a

manner that the integral curves {h = h1,k(λ)} ⊂ Σ+
1 and {h = h2,k(λ)} ⊂ Σ+

2 leave the point αk and the integral
curves {h = h1,k(λ)} ⊂ Σ+

1 and {h = h2,k+1(λ)} ⊂ Σ+
2 enter the point βk (Fig. 2).

From formulas (3.10) and Properties 4.1 and 4.2 it follows that the integral curves h = h1,k(λ) and h = h2,k(λ)
have a common tangent at the points αk and that and in a neighborhood of the point αk, the curve h = h1,k(λ)
is on the right of the curve h = h2,k(λ), i.e., h′2,k(λ) > h′1,k(λ). The integral curves h = h1,k(λ) and h = h2,k(λ)
have no points of intersection except for the point αk. Indeed, since h1,k(λ) and h2,k(λ) increase monotonically,
the inequality h′2,k(λ∗) < h′1,k(λ∗) is satisfied at the point of their intersection λ∗ (if such exists), which is in
contradiction to Properties 4.1. Hence, the curve h = h2,k(λ) is located to the left of the curve h = h1,k(λ).
Similarly, it is proved that the integral curve h = h2,k+1(λ) is located to the right of the integral curve h = h1,k(λ).
Therefore, if the arc l(αk, βk) of the discriminant curve connects the points αk, βk and contains the point βk+1,
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then αk+1 ∈ l(αk, βk) and the embedding l(α1, β1) ⊃ l(α2, β2) ⊃ · · · ⊃ l(α∗, β∗) is valid. Here α∗ = limαk and
β∗ = limβk as k →∞.

We assume that α∗ 6= β∗. Then, the closedness of Ω, the smoothness of the functions h1,k(λ) and h2,k(λ),
and the relative position of their plots imply the convergence: h1,k(λ), h2,k(λ) → g(λ) and h′1,k(λ), h′2,k(λ) → g′(λ)
as k → ∞. Here h = g(λ) is a smooth curve in Ω which connects the points α∗ and β∗. According to (3.10), the
latter limit is equivalent to the limit q3/2

1 (h1,k(λ), λ), q3/2
2 (h2,k(λ), λ) → g′(λ) as k → ∞, and, consequently, by

virtue of the continuity of qi(h, λ), the equality g′(λ) = q
3/2
1 (g(λ), λ) = q

3/2
2 (g(λ), λ) is true. From these equalities

and Properties 4.1 it follows that: a) the curve (g′(λ), g(λ), λ) lies on the criminant of the key equation; b) at the
points of the curve (g′(λ), g(λ), λ), the tangent to the surface Σ+ coincides with the contact plane. Therefore, the
curve h = g(λ) consists of irregular singular points. By virtue of Properties 5.1, this implies that α∗ = β∗.

In the space of variables (h′, h, λ), the integral curves (h′1,k(λ), h1,k(λ), λ) ⊂ Σ+
1 and (h′2,k(λ), h2,k(λ), λ)

⊂ Σ+
2 form one curve, which wraps the surface Σ+ and, approaching the point α∗, performs an infinite number

of rotations around it. Such behavior of integral curves near an irregular singular point is characteristic only of a
folded focus. The fact that the other irregular singular point of the surface Σ+ is also a folded focus is established
similarly. Thus, Properties 5 are proved.

4. Gas Flow. Let an integral curve h = h(λ) intersects the discriminant curve ∂Ω at the points λ = λ1 and
λ = λ2 (λ1 < λ2). According to the representation λ = r/

√
t2 + 1, in the space of events R4(r, θ, ϕ, t), the images

of the points λ1 and λ2 are the hyperboloids Γ1 (r1 = λ1

√
t2 + 1) and Γ2 (r2 = λ2

√
t2 + 1), whose projections in

the space R3(r, θ, ϕ) are the spheres with variable radii

r = λ1

√
t2 + 1 for S1(t); r = λ2

√
t2 + 1 for S2(t).

Below it will be shown that the spheres S1(t) and S2(t) are acoustic characteristics.
Statement 1. The quantities (2.2) and (2.5) on the solution h = h(λ) with the function ω(τ, θ, ϕ) defined

by the initial distribution ω(0, θ, ϕ) ≡ π/2 specify the motion of the gas volume between the source S1(t) and the
sink S2(t). At the initial time t = 0, the gas occupies the volume Π = {(r0, θ0, ϕ0): |τ(r0)| < θ0 < π − |τ(r0)|,
λ1 ≤ r0 ≤ λ2} and its state is defined by

Ū
∣∣∣
t=0

= a0
h2 + 1
r20h

′ , H̄
∣∣∣
t=0

=
a0

r0
, ρ

∣∣∣
t=0

= R0
|h′|√
h2 + 1

,

S
∣∣∣
t=0

= S0, ω
∣∣∣
t=0

= ω(τ(r0), θ0, ϕ0),
(4.1)

where h = h(r0), h′ = h′(r0), τ(λ) = arctan h(λ), and (r0, θ0, ϕ0) ∈ Π.
The particles that start at the initial time t = 0 start from the spherical zone |τ(r0)| < θ < π − |τ(r0)| of

a sphere of radius r0 move on the trajectories
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Fig. 3

x(t) = r(t)(x0 cos τ(λ(t)) + m sin τ(λ(t))/ sin θ0), (4.2)

where r0(x0, y0, z0) ∈ Π is the initial particle position in Cartesian coordinates, x0 = (x0, y0, z0), m = (−y0, x0, 0),
and at the time t, they occupy the spherical zone

|τ(λ(t))| < θ < π − |τ(λ(t))|, r(t) = λ(t)
√
t2 + 1. (4.3)

Here r(t) is the radius of the sphere and λ = λ(t) is a solution of the Cauchy problem

dλ

dt
=

a0

t2 + 1
h2(λ) + 1
λ2h′(λ)

, λ(0) = r0. (4.4)

The source and sink are located in the spherical zones Sf1 and Sf2 [defined by inequalities (4.3) with λ(t) = λ1, λ2]
of the spheres S1(t) and S2(t). The flow for them is Q(t) = 4πR0a0/(t2 + 1). At the source and sink, the particle
acceleration is infinite and the quantities (2.2) are finite.

Proof. The initial data (4.1) are found from (2.2) and (2.5) at t = 0. Formula (4.2) is obtained from the
spherical component (1.6) of the motion with allowance for the radial component r(t). Equation (4.4) is obtained
by the substitution of r(t) = λ(t)

√
t2 + 1 into the equations of radial gas motion dr/dt = Ū(r, t), r(0) = r0.

Relation (4.2) implies the formula z′(t) = z0r(t) cos τ(λ(t)), which defines the size of the spherical zone (4.3).
In particular, at the time ts at which τ(λ(ts)) = 0, the particles occupy the entire sphere of radius r(ts) without
poles. The region Π is defined at the time t = 0 by the spherical zones (4.3), where λ(0) = r0 ∈ [λ1, λ2].

For an integral curve {h = h(λ)} ⊂ Ω, the inequality h′(λ)|[λ∗
1 ,λ∗

2 ] > 0 is satisfied, and hence, Ū |Π > 0 and
the source and sink are located on the spheres S1(t) and S2(t). The gas flow through the surface Si(t) (i = 1, 2) is

calculated by the formula Qi(t) =
∫

Sfi

ρui dS taking into account that the normal velocity component of the gas flow

through the surface Si relative to the velocity of this surface is ui = Ū(λi, t)−d(λi

√
t2 + 1)/dt = U(λi)/

√
t2 + 1 and

the area of the spherical zone is Sfi = 2πhsiri, where hsi = 2ri cos τ(λi) = 2ri/
√
h2(λi) + 1 and ri = λi

√
t2 + 1.

The quantities ρ and U are defined by formulas (2.2) and (2.5).
The functions h(λ) and h′(λ) are bounded, and, hence, the quantities (2.2) are finite. Differentiating the

velocity components Ū and, H̄ from (2.2) with respect to t to find the acceleration and using Property 4.3, we
obtain the infinite particle acceleration on the spheres Si(t). Thus, Statement 1 is proved.

Figure 3 shows the particle trajectories that start from the meridians of the sphere, the surfaces woven from
the trajectories, and the images of the meridians. It is evident that the trajectories are not straight lines.
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Let us introduce the integral

I(α, β) =
1
a0

β∫
α

λ2 d arctan h(λ).

Statement 2. In the projective Ovsyannikov vortex, let a gas volume Γ move between two spherical pistons
P1(t), P2(t), whose radius varies as

r = µ1(t)
√
t2 + 1 for P1(t); r = µ2(t)

√
t2 + 1 for P2(t),

where µi = µi(t) is a solution of the Cauchy problem (4.4) with the initial data µi(0) = ri and λ1 < r1 < r2 < λ2.
The following versions of motion of the gas volume are possible:

1. For I(r2, λ2) < π/2, the piston P2 reaches the characteristic t∗ in a finite time S2, after which the solution
fails.

2. For I(r2, λ2) ≥ π/2, the gas volume Γ moves for an unlimited time. With time, the distance between the
pistons P1 and P2 and the height of the spherical zone of each piston Pi tend to infinity and the angle that forms
the spherical zone of the piston Pi tends to the finite quantity π − 2|τ(µ∗i )| > 0, where µ∗i = lim

t→∞
µi(t).

Proof. 1. The condition I(r2, λ2) < π/2 is obtained by integrating Eq. (4.4) with the function µ2(t) instead
of λ(t):

1
a0

λ2∫
r2

µ2
2 d arctan h(µ2) =

t∗∫
0

d arctan t = arctan t∗ <
π

2
.

2. Let the piston P2 do not reach the characteristic S2 in a finite time. Then, the fact that the function
µ2(t) increases monotonically and is bounded [λ1 6 µ2(t) 6 λ2] implies the existence of

µ∗2 = lim
t→∞

µi(t) 6 λ2 (i = 1, 2)

and the following estimate is valid:

1
a0

λ2∫
r2

λ2 d arctan h(λ) >
1
a0

µ∗
2∫

r2

λ2 d arctan h(λ) =

∞∫
0

d arctan t =
π

2
.

The condition I(r2, λ2) > π/2 is obtained.
If µ∗2 > µ∗1, the distance between the pistons P1 and P2 increases: (µ2(t)−µ1(t))

√
t2 + 1 ∼ (µ∗2−µ∗1)

√
t2 + 1 →

+∞ as t → ∞. Let us show that the inequality r2 > r1 implies that µ∗2 > µ∗1. Integration of Eqs. (4.4) with the
function µi(t) instead of λ(t) on the segment [ri, µ∗i ] yields two equalities I(ri, µ∗i ) = π/2, i = 1, 2. Since the
integrand I is positive, the embedding of the integration intervals [r2, µ∗2] ⊂ [r1, µ∗1] is impossible and, hence,
r2 > r1 ⇒ µ∗2 > µ∗1.

The angle that forms the spherical zone of the piston Pi for t → ∞ is defined by formula (4.3) with µ∗i
instead of λ(t), and the inequality τ(µ∗i ) = arctan µ∗i < π/2 holds. The height of this spherical zone is
µi(t)

√
t2 + 1 cos τ(µi(t)) → +∞. Thus, Statement 2 is proved.
In the space R3(r, θ, ϕ), we consider a spherical surface D(λ0, t), λ0 ∈ [λ1, λ2], whose radius varies as

r = λ0

√
t2 + 1. Then, for the velocity of gas motion on the surface D(λ0, t) relative to the velocity Dr = λ0t/

√
t2 + 1

of this surface, the velocity component that is normal to D(λ0, t) is v = Ū(λ0, t)−Dr(λ0, t) = U(λ0)/
√
t2 + 1. At

the points (h′i(λ0), h0, λ0) ∈ Σ+
i (i = 1, 2) let the functions U(λ) and C(λ) from (2.5) take the values Ui(λ0) and

Ci(λ0) and the quantities vi = Ui(λ0)/
√
t2 + 1 and ci = Ci(λ0)/

√
t2 + 1 are defined.

Statement 3. 1. At the points (h′i(λ0), h0, λ0) ∈ Σ+
i \K, where K is the criminant of Σ+, the inequalities

v2
1 > c21 and v2

2 < c22 are satisfied. The integral curves {h = h1(λ)} ⊂ Σ+
1 \K and {h = h2(λ)} ⊂ Σ+

2 \K specify the
“supersonic” and “subsonic” gas flow regimes.

The words “supersonic” and “subsonic” are taken in inverted commas because the sound velocity ci is
compared to the normal velocity component vi of gas motion relative to the surface D.

2. At the points (h′(λ0), h0, λ0) ∈ K, the equality v2
1 = v2

2 = c2 holds. The sphere with r = λ0

√
t2 + 1 is an

acoustic characteristic of the EGD on solution (2.2), (2.5), in which h = h(λ) is an integral curve of Eq. (2.8) with
the initial condition h(λ0) = h0.
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Proof. 1. Let (h0, λ0) be a certain point from Ω\∂Ω. We show that at the points (h′i(λ0), h0, λ0) ∈ Σ+
i \K

the inequalities v2
1 > c21 and v2

2 < c22 are satisfied, which is equivalent to U2
1 > C2

1 and U2
2 < C2

2 . Using the
representation of solution (2.5), we write the last two inequalities as

h′1(λ0) < q
3/2
∗ , q

3/2
∗ < h′2(λ0), (4.5)

where q3/2
∗ = (a2

0/(λ
4
0C0))3/8(h2

0 + 1)7/8. Since h′i = q
3/2
i , from (4.5) follows

q1(h0, λ0) < q∗ < q2(h0, λ0). (4.6)

Since q1(h0, λ0) and q2(h0, λ0) are roots of the polynomial F̄ (q, h, λ), by virtue of Properties 3, inequalities (4.6)
are equivalent to the inequality F̄ (q∗, h0, λ0) < 0. This leads to the inequality

h2
0 < λ4

0B
4(λ0)/(44C3

0a
2
0)− 1,

which is satisfied for (h0, λ0) ∈ Ω \ ∂Ω.
2. For (h0, λ0) ∈ ∂Ω, the equalities v2

1 = v2
2 = c2 are equivalent to the equalities q1(h0, λ0) = q∗ = q2(h0, λ0)

or F̄ (q∗, h0, λ0) = 0. The latter equality is verified by calculations. Thus, Statement 3 is proved.
Numerical calculations of gas motion for various values of the parameters a0, b0, and C0 show that in the

“supersonic” regime defined by the integral curves from Σ+
1 , the inequality I(λ1, λ2) < π/2 is satisfied, and, hence,

at any initial positions of the pistons P1 and P2, the particles enclosed between them reach the characteristic S2 in
a finite time. The surface S2 is the noncontinuability surface of the given solution. Next, it will be shown that by
means of a shock wave, the “supersonic” regime can be transformed to the “subsonic” regime.

In the “subsonic” regime of gas motion defined by the integral curves from Σ+
2 , both I(λ1, λ2) < π/2 and

I(λ1, λ2) > π/2 are possible. In the latter case, with an appropriate choice of the initial radii r1 and r2 of the
pistons P1 and P2 the gas volume enclosed between them moves for an unlimited time.

5. Shock Wave. To join the solutions in the projective Ovsyannikov vortex via a shock wave, we use the
approach proposed in [4]. An invariant shock wave D(λ0, t) with the front λ = λ0 is considered. In the physical
space R3(r, θ, ϕ), the shock front is a sphere whose radius depends on time: r = λ0

√
t2 + 1. The front propagates

in the radial direction at velocity Dr(λ0, t) = λ0t/
√
t2 + 1.

It is necessary to choose integral curves {h = hi(λ)} ⊂ Σ+
i (i = 1, 2) of Eq. (2.8) with parameters a0i, b0i and

C0i in such a manner that the quantities (2.2) and (2.5) with the functions h1(λ) and h2(λ) define the gas motion
ahead of and behind the shock front, respectively. The gas-dynamic quantities (2.2) and (2.5) at the leading edge of
the shock wave are denoted by subscript 1 and those at the rear edge by subscript 2. The gas flow velocity relative
to the front in the radial direction vi = Ūi(λ0, t)−Dr = Ui(λ0)/(t2 + 1).

Zemplén’s theorem for the normal velocity component of gas motion relative to the shock wave holds is
satisfied by virtue of Statement 3. At the shock front, the Rankine–Hugoniot relation should hold [8]; in terms of
the invariant values (2.5) these relations are written as

R2U2 = R1U1; (5.1)

P2 +R2U
2
2 = P1 +R1U

2
1 ; (5.2)

5P2/R2 + U2
2 = 5P1/R1 + U2

1 . (5.3)

The velocity components tangential to the front should also be conserved:

H2 = H1, ω2 = ω1. (5.4)

In view of (2.5), the first equation of (5.4) at the front λ = λ0 implies the relation

a02 = a01 = a0. (5.5)

The second equation of (5.4) at the front λ = λ0 becomes ω2(τ2(λ0), θ, ϕ) = ω1(τ1(λ0), θ, ϕ), where τi
= arctan hi(λ0). Since the functions ωi(τ, θ, ϕ) (i = 1, 2) are solutions of (1.4) with the common initial data
ωi(0, θ, ϕ) ≡ π/2, the equality ω2(τ, θ, ϕ) = ω1(τ, θ, ϕ) holds. We confine ourselves to considering the integral curves
h = h1(λ) and h = h2(λ) for which h1(λ0) = h2(λ0) = h0. Then, τ1(λ0) = τ2(λ0) = arctan h0 and the second
equation in (5.4) does not give auxiliary constraints on the parameters.
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For a polytropic gas with the equation of state (2.1), the formula c2 = (5/3)p/ρ holds, which, in view of (2.2),
implies C2 = (5/3)P/R. Therefore, Eq. (5.3) is equivalent to U2

2 + 3C2
2 = U2

1 + 3C2
1 , whence using the Bernoulli

integral (2.7) and equality (5.5), we obtain

b02 = b01 = b0. (5.6)

Equations (5.1) and (2.5) imply R02

√
h2

0 + 1 = R01

√
h2

0 + 1 and, hence, R02 = R01.
By virtue of (2.7) and (5.1), equality (5.2) becomes (U2−U1)(4U1U2+B(λ0)) = 0. For shock waves, U2 6= U1,

and, therefore, by virtue of (2.5) we obtain

h′1(λ0)h′2(λ0) = δ, δ = −4a2
0(h

2
0 + 1)2/(λ4

0B(λ0)). (5.7)

Statement 4. In the projective Ovsyannikov vortex, let the gas flow ahead of the shock front λ = λ0 be
specified by quantities (2.5) with the constants C01, R01, and S01 = (3/5)C01R

−2/3
01 and the integral curve {h =

h1(λ)} ⊂ Σ+
1 [λ 6 λ0 and h1(λ0) = h0] of the equation

3C0ih
′8/3
i + k0h

′2
i + d = 0, k0 = B(λ0)(h2

0 + 1)1/3, d = (h2
0 + 1)7/3a2

0/λ
4
0 (5.8)

for i = 1 with the parameters a0 and b0. If the integral curve {h = h2(λ)} ⊂ Σ+
2 [λ > λ0 and h2(λ0) = h0] of

Eq. (5.8) for i = 2 with the constant C02 = −(1/3)(bp2
2 + d)/p8/3

2 , where p2 = δ/h′1(λ0) and δ is defined by the
second equality (5.7), contains the point (p2, h0, λ0) and the inequalities p2 > h′1(λ0) and C02 > C01 are satisfied,
then the gas flow behind the shock wave is defined by the quantities (2.5) with the constants C02, R02 = R01, and
S02 = (3/5)C02R

−2/3
01 and the integral curve h = h2(λ) (see Figs. 4 and 5).

Proof. According to (5.7), the integral curve h = h2(λ) should satisfy the relation h′2(λ0) = δ/h′1(λ0).
Substituting p2 = δ/h′1(λ0) into (5.8) for i = 2 instead of h′2, we find the expression for C02. For Zemplén’s theorem
to hold, it is necessary that the gas flow behind the shock front be specified by the integral curve h = h2(λ) with
the initial condition h2(λ0) = h0 which lies on the surface Σ+

2 of Eq. (5.8) for i = 2. The point (p2, h0, λ0) can be
on the surface Σ+

1 or Σ+
2 of Eq. (5.8) for i = 2. For equality (5.7) to hold, it is necessary to verify that h′2(λ0) = p2,

which is equivalent to (p2, h0, λ0) ∈ {h = h2(λ)}.
By virtue of (2.5), the inequalities h′2(λ0) > h′1(λ0), C02 > C01 guarantee an increase in the density and

entropy upon shock-wave propagation. Thus, all necessary conditions at the shock front are satisfied. Statement 4
is proved.

Figure 4 shows the integral curves h = h1(λ) and h = h2(λ) which define the gas flows ahead of and behind
the shock front. Figure 5 shows the particle trajectories that start from the spherical zone. At a certain time, a
shock wave passes through these gas particles, leading to a change in the trajectories. Because of the choice of the
parameter h0 = 0, the shock surface is a sphere without poles.

Let us consider the “supersonic” motion of particles in the gas volume between two pistons P1 and P2 (see
Statement 2) defined by the integral curve {h = h1(λ)} ⊂ Σ+

1 with the initial condition h1(r2) = h0 = 0 and a
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shock wave D(r2, t) with the front λ = r2. Since τ(r2) = arctan h0 = 0, from (4.3) it follows that the shock front is
a sphere without poles of radius r = r2

√
t2 + 1. Because v1 > 0, the shock starts moving from the piston P2 to the

piston P1 at the time t = 0. In this case, the gas particles and the shock front move away from the center. Behind
the shock wave, the “subsonic” regime is established.

It was noted above that in the projective Ovsyannikov vortex, “supersonic” gas motion exists for a finite
time t∗. If µ1(t∗) > λ2, the shock wave reaches the piston P1 earlier than the “supersonic” invariant solution ceases
to exist.
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